Причины появления технологии WDM
Рост объема передаваемых данных постепенно привел к исчерпанию пропускной способности существующего оптического волокна, со всей остротой поставив вопрос ее увеличения. Его можно решить тремя способами: проложив новый кабель, перейдя к более производительной аппаратуре временного мультиплексирования или применив WDM.
Недостатки первого сценария очевидны. Реализация второго варианта в сетях дальней связи SONET/SDH тоже связана с рядом трудностей. До недавнего времени в таких сетях самым быстрым был канал OC-48/STM-16 (скорость передачи 2,4 Гбит/с). Затем началось внедрение аппаратуры уровня OC-192/STM-64, обеспечивающей производительность 10 Гбит/с, однако проложенное волокно изначально не было рассчитано на столь высокие скорости передачи.
Во-первых, при таких скоростях существенную роль начинают играть отражения сигнала от мест соединения кабелей и поляризационная модовая дисперсия, вызванная отклонением поперечного сечения волокна от круговой формы. Для компенсации дисперсии прокладываются отрезки волоконно-оптического кабеля с дисперсией противоположного знака. Во-вторых, с ростом скорости передачи усиливается затухание (рассеяние) светового потока и ухудшается чувствительность фотоприемника, т. е. увеличивается минимальная мощность входного сигнала, при которой частота появления ошибок (BER) соответствует определенному пределу. Чтобы обеспечить достаточную мощность принимаемого сигнала, приходится устанавливать дополнительные усилители и регенераторы.
Таким образом, планируя переход к канальным скоростям 10 Гбит/с и более, необходимо проанализировать ограничения, обусловленные искажениями сигнала в волокне и техническими возможностями аппаратуры. Многие специалисты сомневаются в том, что в ближайшие годы временное мультиплексирование (например, SONET/SDH) сможет на практике превзойти уровень 10 Гбит/с.
Теперь рассмотрим третий вариант - технологию WDM, позволяющую заметно повысить эффективность использования суммарной пропускной способности оптического волокна.
Рис.1. Рабочие диапазоны оптического волокна.
Напомним, что обычное оптическое волокно имеет три окна прозрачности в инфракрасной области; их центральные длины волн равны 850, 1300 и 1550 нм. Для передачи на большие расстояния используются только диапазоны 1300 и 1550 нм, характеризующиеся минимальным затуханием сигналов (рис. 1). Ширина каждого из этих двух диапазонов составляет 200 нм, что в сумме приблизительно эквивалентно частотному интервалу в 60 ТГц.